projective dimension造句
例句與造句
- In chapter 4 , we define the projective dimension of flat modules , use it to characterize many rings , and the relations between cotorsion modules and the projective dimension of flat modules are also given
在第四章中,我們定義了平坦模的投射維數(shù),用它刻劃了一些環(huán),并討論了cotorsion模和嚴坦模的投射維數(shù)的關系。 - When i s is a squarefree strongly stable ideal , ic = i . therefore p and / have the same graded betti numbers , projective dimension and regularity . in this paper , we study the relationship of the betti numbers between ic and i . in section 1 , the concepts of combinatorial shifting and some related results are given
) s為無平方強穩(wěn)定理想時i ~ c = i ,因而i ~ c和i的分次betti數(shù)、投射維數(shù)和正則度相同,本文主要研究i為無平方穩(wěn)定理想時, i ~ c和i之間分次betti數(shù)的關系。 - In the second chapter , we attain this goal by another route . collecting all short exact sequence and the morphisms among them , we get a new category , call the short exact sequences category crm . we define a global dimension attached to the original ring r from the view of the short exact sequences category cr . m , named the exact projective dimension
在第二章中我們將通過另一種方法,也就是考察所有的短正合列以及短正合列之間的態(tài)射,我們得到一個新的范疇,通過對這個范疇(我們稱之為短正合列范疇c _ rm )的一些基本性質的考察,我們定義出與環(huán)r相關的同調(diào)維數(shù),我們稱它為正合投射維數(shù)。 - In section 3 , we show that when i is a squarefree stable ideal , shiftij ( i ) and i have the same graded betti numbers , projective dimension and regularity , then ic and i have the same graded betti numbers , projective dimension and regularity . at last we apply the results we obtained to simplicial complexes
在第三節(jié)中證明了當i為無平方穩(wěn)定理想時, shiftij ( i )與i的分次betti數(shù)、投射維數(shù)和正則度相同,從而i ~ c與i的分次betti數(shù)、投射維數(shù)和正則度相同,最后將所得結論推廣到單純復形上。 - It's difficult to find projective dimension in a sentence. 用projective dimension造句挺難的